

MERI College of Engineering and Technology (MERI - CET)

Lesson Plan

Name of the Faculty : Mr. Pardeep

Discipline : Electrical & Electronics Engineering

Semester : 6th

Subject : Conventional and Renewable Energy Resources (OEC-EE-08G)

Lesson Plan Duration : 15 Weeks (from May. 2021 to August 2021)

** Work Load (Lecture) per week (in hours): Lectures-02, Practicals-0

Week	Theory		Practical	
	Lecture Day	Topic (including assignment/test)	Practical day	Topic
1 st	1 st	Energy sources, their availability.	uuy	
	2 nd	Recent trends in Power Generation.		
2 nd	3 rd	Amount of generation of electric power from Conventional and non conventional sources of energy in Haryana India and some developed countries of the world. Interconnected Generation of Power Plants.		
3 rd	5 th	Load forecasting, load curves, load duration curve.		

MERI College of Engineering and Technology (MERI - CET)

Session: 2020-21							
	6 th	Base load and Peak load Power Plants.					
4 th	7 th	Connected Load, maximum demand, demand factor.					
	8 th	Group diversity factor, load factor.					
5 th	9 th	Significance of load factor, plant factor.					
	10 th	Capacity factor, selection of unit size.					
6 th	11 th	No. of Units, reserves.					
	12 th	Cost of powergeneration, Depreciation, tariff.					
7 th	13 th	Selection of site.					
	14 th	Capacity calculations.					
8 th	15 th	Classification of Thermal Power Stations(TPS).					

MERI College of Engineering and Technology (MERI - CET)

Jession, 20			
	16 th	Schematic diagram and working of Thermal Power Stations(TPS).	
9 th	17 th	HydroElectric Plant.	
	18 th	Nuclear Power Plant.	
10 th	19 th	Wind Systems.	
	20 th	Solar Systems	
11 th	21 th	fuel cell.	
	22 nd	Magneto Hydro Dynamic (MHD) system.	
12 th	23 nd 24 nd	Energy management. Energy Audit.	
13 th	25 nd	Energy Efficient Motors.	
	26 nd	Co-generation.	
14 th	27 nd	Revision	
	28 nd	Revision	
15 th	29 nd	Revision	
	30 nd	Revision	